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Abstract 
Incremental learning from noisy data presents 
dual challenges: that of evaluating multiple hy- 
potheses incrementally and that of distinguishing 
errors due to noise from errors due to faulty hy- 
potheses. This problem is critical in such areas 
of machine learning as concept learning, inductive 
programming, and sequence prediction. I develop 
a general, quantitative method for weighing the 
merits of different hypotheses in light of their per- 
formance on possibly noisy data. The method is 
incremental, independent of the hypothesis space, 
and grounded in Bayesian probability. 

Introduet ion 
Consider an incremental learning system for which 

the input data may be noisy. As the system learns, 
it maintains a set of hypotheses. Each example or in- 
put datum may support some hypotheses and contra- 
dict others. As learning proceeds, new-and probably 
more complex-hypotheses may need to be introduced 
as the available ones prove to be unacceptable. The 
question we address in the paper is: How do we quan- 
tify our relative confidence in fhe various hypotheses, 
while accounting for  the possibility of noisy data and 
an ezpanding hypothesis space? 

If the input data are noise free, the question is easy: 
any contradiction between data and hypothesis elimi- 
nates the hypothesis. With noise, however, no hypoth- 
esis can be permanently discarded until the evidence 
of its unsuitability is sufficiently strong. Moreover we 
generally prefer simpler hypotheses to more complex 
ones, but there is often a tradeoff between the com- 
plexity of the hypothesis and the amount of error it 
suffers on the input data. 

To clarify the issues, consider the following situation. 
The problem is to infer from a sequence of integers a 
rule in the form of a finite difference equation that pre- 
dicts the remainder of the sequence. We stop looking 
as soon as we are "sufficiently confident" (i.e., are will- 
ing to bet) that we have the best rule. The system 
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must, therefore, be incremental: following each input 
value, it must decide whether to stop or to continue 
and which hypotheses are viable explanations. 

Now suppose that we have obtain the first input 
value: x1 = 1. Four of the many possible rules for 
this sequence from the meager evidence are: 
0 H1 The sequence consists of all ones. 
e Ha: The sequence begins with 1, and for all n > 1, 

0 H3: The sequence begins with 1, and for all n > 1, 

e H4: The sequence begins with 1, and for all n > 1, 

All these hypotheses agree with the first value x1 = 1 
of the series, and except for HI (which predicts 1 for 
the next value), all predict 2 for the second value. The 
first hypothesis requires no previous values in order to 
make its prediction ("one"), whereas the other three 
base their prediction for the next value on a single pre- 
vious value in the sequence. 

Suppose the second value z~ is in fact 2. We cannot 
yet discard the first hypothesis because x2 may be in 
error. But intuitively our confidence diminishes that 
H I  will correctly predict x3. 

Next we learn that 1 3  = 3. H I  now has incorrectly 
predicted two values, H3 has incorrectly predicted one 
value, and the others have correctly predicted two val- 
ues. In view of our lack of faith in HI, an algorithm 
might well decide to replace it with the hypothesis: 
0 H5: The sequence begins with 1 and 2, and for all 

An incremental algorithm does not test new hypothe- 
ses on all previous input examples, but with our omni- 
science we can see that Hs correctly predicts x3 given 
the values x1 and 22. The fact that H5 requires two 
prior values to predict the next instead of just one 
means that it will not begin making predictions un- 
til 25 ,  assuming that the algorithm has stored only x3. 
On the other hand, H5 is syntactically less complex 
than H4, and perhaps Ha as well if multiplication is 
an expensive operation. 

~ n + 1  = I n  + 1. 

xn+1 = 2, x 2. 

xn+1= (xn - 1)' + 2. 

n > 2, ~ , + 2  = xn+l + I n .  
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Next we learn that 2 4  = 5. At this point we can 
summarize our knowledge about these five hypotheses: 

Hypothesis Correct Incorrect Relative 
Name Predictions Predictions Comdexitv 

~ 

H1 0 3 small 
H z  2 1 medium 
H3 1 2 medium 
H4 2 1 high 
H5 0 0 medium 

Assume that we are seeking a single theory (hypoth- 
esis) to explain the data rather than a weighted com- 
bination of several hypotheses. On which hypothesis 
should we place our bets for predicting 2 5 ,  and how 
much confidence should we have in the result? 

Again, the fundamental problem is to find an in- 
cremental technique to weigh the merits of hypotheses 
when the data are noisy and the constraint of incre- 
mentality implies, among other things, that hypotheses 
may not all be evaluated using the same data. Solv- 
ing this problem in a general and principled way is the 
purpose of this paper. Any approach to this question 
is likely to be somewhat subjective, since we are for- 
malizing the notion of preference; but any reasonable 
approach should at least make the nature of its sub- 
jectivity explicit, and if possible should allow different 
preferences within the same framework. 

The theory to be described offers these features. 

Background 

The problem of weighing competing hypotheses en- 
joys a long history of debate among philosophers and 
statisticians. Given a family ‘H of hypotheses and a 
set E of evidence, one has to select the best hypoth- 
esis from ‘H and to quantify the likelihood Pr( H I E) 
that the hypothesis H in 7f accounts for E. Popper 
[Popper, 19721 studies the problem from the viewpoint 
of weighing competing scientific theories and develops 
a measure of confidence that credits a hypothesis most 
for correctly predicting a result that otherwise would 
be highly improbable. I. 3. Good [Good, 19831, who 
has studied this problem for some time, proposes a 
measure of the weight W of evidence E in favor of the 
hypothesis H given by 

I H) w = log 
Pr(E I p)’ 

where 
Related to Good’s measure are the information- 

theoretic measures that in effect credit a hypothesis 
with the information obtained from the input exam- 
ples. For many domains one can construct a hypothe- 
sis that accounts for any finite number of examples (for 
example, an n’th order difference equation can account 
for any sequence of n + 1 integers). Constantly replac- 
ing a hypothesis that accounts for all n examples 80 far 

is the logical negation of the hypothesis H. 

with a more complex one that accounts for n+ 1 exam- 
ples is simple memorization, not learning: the hypoth- 
esis must achieve a certain amount of compression of 
the input data [Board and Pitt, 19901. The term min- 
lmum description length (MDL) model is often used 
when one’s confidence in a hypothesis is proportional 
to the expected amount of compression the hypothesis 
achieves in explaining the example data. In the case of 
noisy data or an incomplete hypothesis class, we can 
compress the input data by writing down a hypothesis, 
omitting all the input examples correctly determined 
by the hypothesis, and listing only the examples that 
conflict with the hypothesis. A better hypothesis has 
fewer exceptions, but it must balance accuracy against 
syntactic complexity in order that the total size of the 
hypothesis and the data be minimal. 

Classical hypothesis testing is another approach. 
Here one evaluates each hypothesis individually, com- 
paring its ability to predict the data to that of a null 
hypothesis that makes random guesses for its predic- 
tions. 

Some scholars, including Good, argue for a univer- 
sal measure, a “best” measure of the weight of evidence 
in a hypothesis. Except, perhaps, for the evaluation of 
scientific theories, this author is not convinced by these 
arguments and believes that practical matters such as 
computational efficiency usually play a role in judg- 
ing hypotheses. Incrementality is one such efficiency 
constraint: the algorithm must revise its confidence 
measure following each new input, without the need to 
save and reprocess more than a small, bounded num- 
ber of inputs. Bayesian models accomplish this if the 
sucessive input values are independent [Laird, 19891; 
otherwise, computing the posterior distribution is not 
incremental. As a practical matter Bayesians typically 
assume that the inputs are independent, even when 
they clearly are not, as a ”first-order” approximation 
to the true posterior. This kind of compromise occurs 
frequently when one must trade cogitation time for on- 
line availability of the inferences. 

In the realm of machine learning, the problem of 
weighing competing hypotheses occurs whenever mul- 
tiple inductive inferences are possible. Recently the 
need for a principled weight-of-evidence measures has 
arisen in the subfield of inductive logic programming 
[Quinlan, 1990; Muggleton and Feng, 19921. Starting 
from a large collection of examples and counterexam- 
ples of a relation, ILP programs search for general- 
izations of the examples that explain as many of the 
positive examples and as few of the negative examples 
as possible. Since many generalizations are possible, 
a “least” generalization is sought, but computational 
complexity and other issues make prohibitive comput- 
ing a unique least generalization. The need arises, 
therefore, to quantify the relative confidence in dif- 
ferent generalizations. So far, MDL and non-Bayesian 
confirmation theory have been suggested [Gillies, 1992; 
Muggleton, 1988; Muggleton et al., 19921, but theoreti- 
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cal and computational efficiency problems persist, and 
no fully satisfactory approach has been found. 

Machine learning and computational learning theory 
contribute two important notions to our theory. The 
first is the importance of prediction. Any concept- 
learning algorithm’ can be converted to a prediction 
algorithm of roughly the same complexity, and vice 
versa [Natarajan, 19911. The idea is that a concept- 
learning algorithm can apply the concept it learns to 
predict the class of each instance from the attributes, 
and a prediction strategy can be turned into a con- 
cept by forming a list of the members of each class. 
The quality of a predictor is measured by the number 
of prediction mistakes it makes as a function of the 
number of examples it has seen. A polynomial-time 
learning algorithm (in the PAC sense) is characterized 
by a harmonic decline in the rate of prediction errors 
(O(l/n)) relative to the number n of examples seen. 
In this paper I cast the theory in terms of a predic- 
tive learner, but by this equivalence the theory applies 
equally to concept learning. 

The other notion is that of learning from noisy 
data, and in the PAC model of learning quite a lot 
is known. Here we summarize these results only 
briefly, but [Angluin and Laird, 1987; Laird, 1988; 
Sakakibara, 19911 can be consulted for more detail. 
The first task is to separate the process supplying the 
(correct) example data from the transmission channel 
through which the data values must pass. That chan- 
nel may be noisy, and as a result the data presented to 
the learner may be incorrect.The noise rate is the frac- 
tion of input bits that differ from those actually trans- 
mitted by the source. In the worst case, systematic 
“adversarial” noise-in which the errors always work to 
the maximum disadvantage of the learning algorithm- 
may favor bad hypotheses over good ones and thereby 
make it impossible to select a good hypothesis unless 
the noise rate is quite small. 

A less-than-worst-case scenario, however, assumes 
that the noise is more random than systematic, and 
since random errors in the input affect both good and 
bad hypotheses alike, bad hypotheses will, with high 
likelihood, still perform worse than good ones. Con- 
sequently a learning algorithm that searches for a hy- 
pothesis in perfect agreement with the input data can 
be changed to accommodate noise merely by choosing 
a least inconsistent hypothesis, Le., one that on aver- 
age disagrees least with the input examples. The cost 
incurred by the need to account for noise is that more 
hypotheses must be entertained until the number of 
input examples is statistically large enough to support 
the inference that some hypotheses are inferior. The 
details of the statistical procedure depend on the noise 
model one is assuming. 

‘Concept learning is the task of learning from examples 
to assign a class name to objects based on their attributes. 
An example is learning to identify birds fiom their plumage, 
song, etc. 

In this paper I have resisted selecting a single noise 
model, just as I have elected not to limit the theory 
to a single domain or representation. Instead I as- 
sume merely that the noise rate is sufficiently low, and 
the noise process sufficiently random, thai on average 
better hypotheses make fewer predictron mistakes than 
worse ones. The emphasis is on a reasonably general 
solution to the problem of incremental learning from 
noisy data in preference to an ad hoc solution that a p  
plies to one representation and one noise model. By 
seeking such generality one is more likely to gain in- 
sight into the fundamental nature of the problem, with 
the result that designing effective algorithms for spe- 
cific cases is easier and more systematic. 

Modeling Predictive Failures 

We adopt the following scenario: Input values 11, 

22,  . . . are presented to a learning algorithm whose task 
is to predict z,+1 from what it has learned on the 
preceding n values. Predictions must be made by se- 
lecting one of a countable family 3c = { H I ,  H z ,  . . .} of 
hypotheses and using it to predict the next value.2 

The algorithm selects possible hypotheses from 3c, 
but at any time it is considering only finitely many 
of them. The set of candidate hypotheses it consid- 
ers may vary over time as unsuccessful ones are d i s  
carded and replaced by new ones. The algorithm is 
incremental in that, if a new hypothesis H is added 
to the set of competing hypotheses before the arrival 
of the i’th value, the evaluation of H begins with the 
i’th value and continues with subsequent values, until 
it is discarded. Thus at any time the hypotheses under 
consideration may be supported or refuted by different 
examples. 

To account for the fact that some hypotheses re- 
quire fewer previous values than others (and thereby 
achieve greater compression), we assume that each hy- 
pothesis H has a fixed “latency” AH 2 0, A latency 
of zero means that the hypothesis requires no previous 
input bits in order to predict the next (e+, HI in the 
introductory example). A hypothesis with latency X 
requires, on average, A bits of input in order to con- 
struct a prediction for one bit. The value AH does not 
enter the theory explicitly, but it affects the algorithm 
implicitly in two ways: 

1. The algorithm must remember as many bits as re- 
quired by the candidate hypothesis with the largest 
latency. For this reason, an incremental algorithm 
may place an upper bound on the latency of hy- 
potheses that it is willing to consider. 

’Bayes-optimal algorithms form a prediction by com- 
bining predictions from all hypotheses in H and weighting 
each prediction by the prior probability of the hypothe 
sis. In most circumstances this is computationally imprac- 
ticd, and often the family of acceptable hypotheses is not 
closed under linear combinations (e.g., sentences in first- 
order logic and finite-state automata). 



2. .4fter being introduced, a new hypothesis must await 
the input of X bits before it can be credited with 
predicting any bits correctly. This may reduce its 
effectiveness relative to other hypotheses introduced 
simultaneously but requiring fewer input bits before 
they can begin predicting. 
Suppose we introduce a new hypothesis H chosen 

arbitrarily. What kind of rate of prediction success 
do we expect from H? Viewing the input stream as 
a sequence of bits, with some values having more bits 
than others, we expect that H will predict some bits 
correctly and others incorrectly. Its success or failure 
in predicting each bit is a random variable that, in gen- 
eral, is governed by a complex stochastic process. But 
in the absense of other information, we may reasonably 
model this prediction process as follows: 

A randomly selected hypothesis H has a finite 
probability p~ of incorrectly predicting any bit b 
of the input stream X .  The (unknown) value p~ 
is f ired for H and independent of b. Thus the 
likelihood of correctly predicting an input value z 
of length z bits i s  (1 - p ~ ) l = I .  

According to this model, the hypothesis H is correct 
iff PH = 0; if H is incorrect, the likelihood of a run 
of correct predictions decreases exponentially with the 
length of the run. 

To forestall any misunderstanding, note that we are 
not requiring this property to be true of our hypothe- 
sis space: It is no more than a simple binomial model 
of what is doubtless a complex process governing the 
pattern of prediction errors from an incorrect hypothe- 
sis. This assumption is not unlike that made by statis- 
ticians when they assume that the performance of a 
hypothesis on successive examples is statistically inde- 
pendent: the independence assumption makes a t  least 
approximate calculations feasible where otherwise no 
calculations a t  all would be tractable. 

Note also that we are not requiring our hypotheses to 
predict the input stream one bit at a time: we simply 
measure prediction success in units of the number of 
bits correctly predicted. This is because input values 
differ in size, and we gain more confidence when a hy- 
pothesis correctly predicts a large input value zi than 
when it predicts a short value. Let us assume that the 
input values and predictions are both encoded in some 
finite alphabet and that we can count the number of 
bits correctly predicted. 

Confidence and Reliability 

Noise-free case. Assume for the moment that the 
input values are noise free, and suppose that a hypoth- 
esis H has correctly predicted the past n bits worth of 
input examples beginning with input Zk+1. According 
to our model, if the hypothesis is faulty, the proba- 
bility of its predicting all n of these bits correctly is 
(1 - p ~ ) " .  The value of p~ is unknown, but we can 

estimate the probability density for it as follows. (For 
readability we shall omit the subscript H from p ~ . )  

Begin with the non-informative prior density of 
f o ( p )  = 1 (for 0 5 p 5 1). The probability of correctly 
predicting the n + 1% bit, given correct predictions on 
the past n bits, is: 

This formula we recognize as the Laplace Law of Suc- 
cession. 

Now we update the posterior density f n ( p )  for p af- 
ter H has predicted n bits correctly, and for this we 
need our assumption that the accuracies of successive 
predictions are independent random variables. An a p  
plication of Bayes's rule gives, for n 2 0: 

= (n + 1)(1- p)". (2) 
As n increases, this density rapidly concentrates to- 
ward low error probabilities (Figure 1). 

At this point we have obtained expressions for the 
probability that H will predict Correctly the first (and 
each subsequent) bit of the next input example and a 
distribution for the parameter p. Next we compute a 
measure of how confident we are in the hypothesis H 
based on its track record of predictive accuracy. Con- 
fidence reflects what is at stake: if risk is low, I may be 
willing to bet on a hypothesis whose distribution fn(p) 
is not so concentrated at zero. One way to model this 
tradeoff is to introduce a parameter 6 that measures 
the acceptable risk of endorsing an incorrect hypoth- 
esis. For 90% confidence, 6 is taken to be 0.1; for 
95% confidence, 6 = 0.05, etc. The numerical figure 
of merit we assign to H is a function of both the dis- 
tribution ,fn(P) (which reflects the performance of the 
hypothesis) and the risk parameter 6. 

So assume we have chosen a value 0 < 6 5 112. 
After H has predicted n bits, what estimate j for p 
can we adopt and be confident that, with probability 
at least 1 - 6, p j? We call 1 - fi the 6-reliability of 
the hypothesis H and estimate its value as a function 
of n. By definition, LF fn(p)dp = 1 - 6. 
Substituting (2) and solving for j :  

jj(,) = 1 - 61/("+'). (3) 
Note that j(n) is 1 - 6 (i.e., high) for n = 0 and de- 
creases exponentially to zero with increasing n. 

Recalling the example above with the five sequence- 
extrapolation hypotheses, only ES is a viable hypoth- 
esis after seeing 24. Assume it predicts correctly the 
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Figure 1: Graph of f n ( p )  for several values of n. 

fifth input value 2 5  = 8. Taking 1 ~ 5 1  = 4 bits and 
6 = 0.05, we find that €I5  is expected to predict cor- 
rectly the next bit with probability 516, and with 95% 
confidence we are willing to bet that Hs's probability 
of making an error on a random bit of the next example 
is less than l j ~ ~  = 0.451. 

Suppose two hypotheses share identical records of 
success in predicting the input data, but differ in their 
syntax. According to this model both have the same 
reliability: the only feature that matters insofar as re- 
liability is concerned is their track record in predicting 
the future. If a choice must be made, clearly we are 
free to choose the simpler hypothesis or the one that 
is computationally faster for making predictions. This 
syntactic criterion, however, applies only after the re- 
liability criterion has been applied-a fact that distin- 
guishes our model from most MDL approaches. 

Worth emphasizing is that this model of confidence 
is independeni of the set of possible hypotheses. We 
have not, for example, defined a prior distribution on 
the set of all possible hypotheses and computed poste- 
riors based on the prediction success of each hypothe- 
sis. While this approach is useful in Bayesian hypoth- 
esis testing, it runs into difficulty when an incremental 
algorithm (like ours) introduces new hypotheses on the 
fly as old ones are discarded. Moreover it requires that 
syntactically variant but semantically equivalent hy- 
potheses be recognized and handled jointly as a single 
hypothesis; frequently, however, the problem of decid- 
ing the equivalence of two hypotheses is undecidable 
or at least computationally intractable. In our model 
each hypothesis is evaluated without regard to what 

other hypotheses may be under consideration. 

Noisy case. Now we consider the more interesting 
case: when the input values may be noisy. We must 
revise our calculation of the confidence and reliability 
of a hypothesis to account for noise. The math is some- 
what more complicated, but the ideas are essentially 
the same. 

Suppose that the hypothesis has correctly predicted 
all but r bits out of the past n. The likelihood of its 
correctly predicting the n + l'st bit is given by 

J; p'( 1 - p)"-'+ldp 

J;P'(l- P)"''dP 
Pr(n+ 1 1 n,r)  = 

- n- r + l ,  for O l r i n . ( 4 )  - 
n + 2  

When r = 0, this agrees with the previous noise-free 
result (1). 

The posterior density fn,r(P) of p, the likelihood that 
the hypothesis will make an error predicting the next 
bit, can once again be calculated using Bayes's rule. 

= (. + l)bn(r I P), (5) 
where bn(r I p) is the binomial density. To solve for 
1 - 3, the &reliability, we set 



and after a bit of calculus we obtain 
r 

where 

{ c i  = 1 
(n-r+l)(n-r+2) ... (n-r+i) 

i! 

(i = 0) 
(i > 0) 

Again, note that Eqn. (6) reduces to the noise-free 
result (3) when r = 0. 

Although we can't solve this expression explicitly for 
1 - $, when 6 is given the sum (6) evaluates to a poly- 
nomial equation that we can solve numerically by stan- 
dard methods. (It looks much more complicated than 
it really is). 

Returning once more to the example, H4 incorrectly 
predicts 24 and 25. Of the first n = 12 input bits, 
therefore, it incurs r = 7 bits of error. Thus its prob- 
ability is about (12 - 7 + 1)/14 = 0.43 of correctly 
predicting the next bit, and with 95% confidence the 
calculation (6) estimates its minimum probability j ~ ,  
of a prediction error as about 0.776. For the hapless 
El,  n = r = 12, and it has only one chance in 14 
of correctly guessing the next bit. Its minimum error 
probability J ~ H ~  is virtually one at  the 95% confidence 
level. 

Factoring Confidence into the Learning 
Algorithm 

How can we incorporate the preceding calculations 
into an incremental algorithm for learning from noisy 
data? We give an algorithm schema for incremental 
learning based on our weight-of-evidence model. The 
schema depends upon the specification for the follow- 
inn elements: - 

A representation language for the input values ("ex- 
amples") and a length measure over the symbols of 
that language. We call the units of measurement 
"bits" and denote the length of the example x by 

A family 31 of hypotheses, together with an e%- 
cient algorithm for deciding whether the hypothe- 
sis H E 31 predicts the value x. Predictions from 
each hypothesis are expressed in the same language 
as used for the examples. 

1x1. 

e An operatorA (the "divergence") that compares an 
input value x to a predicted value y and expresses the 
difference x A y  in bits. The quantity x A y  indicates 
the number of bits in the input x incorrectly pre- 
dicted by the hypothesis; thus the divergence func- 
tion must have the property: 0 5 (xAy) 5 1x1. 

e A schedule for introducing new hypotheses from 31 
into a finite set of active candidate hypotheses. 

e A criterion for deciding whether an active hypothe- 
sis should be retained or discarded, based upon its 
record of predictive success. One possibility is to 

eliminate hypotheses H for which $H rises above 
some threshold at a given confidence level. 

* A syntactic criterion that selects a preferred hypoth- 
esis from among a set of hypotheses that so far are 
equally successful in predicting input values. 

As discussed above, we shall not assume any proper- 
ties of the noise model except that on average good 
hypotheses make fewer prediction mistakes than worse 
ones. 

Given these elements, we may construct the follow- 
ing learning algorithm: Let ACTIVE be a finite set 
of active hypotheses from X, initially empty. Each 
hypothesis H E ACTIVE has a record of nH bits pre- 
dicted, r H  bits of which were incorrect. 

1. Add to ACTIVE a set of fresh candidates from 
31, setting n = r = 0 for each. 

2. Get the next input example x .  
3. For each H E ACTIVE:  
3.1 Compute xAy, where y is H's prediction for 

3.2 Set nH := nH + 1.1 and r H  := rH + (xAy). 
3.3 If EI fails the retention criteria, discard H from 

4. Let $ = max{JjH I H E ACTIVE}  
and PREFERR ED-HYPOTHESIS= the pre- 
ferred hypothesis among the set {E 1 H E 
A C T I V E , ~ ~ H  = $1. Output the prediction of 
PREFERRED-HYPOTHESIS for the next ex- 
ample. 

Naturally any reasoning about this algorithm, in- 
cluding its correctness and its complexity, will depend 
upon the above elements and upon the nature of the 
particular noise model. 

A n  Application 
As a simple, if somewhat contrived, illustration of 

how one might apply the theory to construct a learning 
algorithm, imagine that a power company is seeking 
to develop a usage profile for its largest customers in 
order to anticipate demand. The day is divided into 
1440 minutes. A hypothesis for each customer is a 
continuous, piecewise linear curve U ( t ) ,  for 0 5 t 5 
1439, representing the predicted usage at time n. Such 
a function can be efficiently represented by a list of 
pairs [t, U ( t ) ] ,  meaning that, between the times t and 
t + 1 minutes, power usage is predicted to vary linearly 
between U ( t )  units and U(t + 1) units. 

The measured usage, of course, is a complex function 
with a lot of noise, and surely not piecewise linear. But 
we are seeking an approximation that captures peaks 
and valleys during the day. A sophisticated Bayesian 
or regression technique could be used to construct such 
a function, but these are not incremental methods and 
are needlessly complex since they look for an optimal, 
rather than acceptable, solution. 

the input. 

ACTIVE.  



A meter samples the customer’s actual power con- 
sumption’once per minute. “Noisen in the form of ran- 
dom events cause a certain amount of daily variation 
in each customer’s usage at  each time. Seasonal effects 
also affect the variation, but for simplicity we assume 
that all variations other than diurnal ones have been 
eliminated. 

The learning task is to learn a set of [n, U ( n ) ]  pairs, 
numbering from one to 1440 pairs. A hypothesis with 
fewer than 1440 pairs makes predictions by linear inter- 
polation at  times not explicitly listed in the set. Such 
a hypothesis is equivalent to a hypothesis with all 1440 
pairs in the set but is syntactically less complex. Since 
there is no difference in the predictions made by equiv- 
alent hypotheses, the size of the hypothesis plays no 
role in evaluating its predictive accuracy. The algo- 
rithm may, however, prefer to output or store a simpler 
hypothesis, and the schedule by which hypotheses are 
considered may introduce ones with fewer points first. 

Suppose a particular hypothesis predicts a usage of 
U at time t .  Let Q be a fixed positive fraction. If the 
measured usage at time t is a(t), and IU(t) - c(t)l < 
a]U(t) l ,  then the prediction is credited with one “bit” 
of accuracy; otherwise it is charged an error of one 
bit. No credit is received for measured usage before 
the hypothesis is introduced. 

The incremental learning schema we defined in a pre- 
vious section requires a schedule for introducing candi- 
date hypotheses. Presumably less detailed hypotheses 
(ones with fewer ranges) should be considered first, so 
hypotheses will be introduced in increasing order of the 
number of pairs, starting with one pair. For each pair 
there are two degrees of freedom: we can specify the 
time 1 and the predicted power level U. Although we 
could search systematically through this space for an 
optimal hypothesis, a more efficient approach is to use 
some simple statistics to estimate the expected times 
of day when the customer reaches the maximum and 
minimum usage levels and then to adjust these esti- 
mates by hillclimbmg. Subsequent hypotheses with 
more ranges can be introduced by partitioning some 
of the ranges of a hypothesis into two separate ranges. 
(For purposes of this example we are not concerned 
with the detailed design of the algorithm). As hy- 
potheses are introduced, evaluated, and discarded, no 
more than a few input values (times and readings) need 
be retained in memory in order to locate maxima and 
minima and to weigh the evidence in favor of each hy- 
pothesis. 

Each active hypothesis is assigned a score represent- 
ing the number of “bits” predicted correctly. Our 
confidence in each hypothesis is measured by the 5- 
reliability and computed using equation (6) above. The 
algorithm can be halted -as soon as some hypothesis 
achieves a desired level of accuracy with sufficient con- 
fidence. 

Regression and other statistical time-series tech- 
niques arguably may do a better job on this problem, 

but the example illustrates how an incremental learn- 
ing algorithm can .be developed in a systematic way for 

nd the hypotheses 

Conclusions 
Incremental learning, by its nature, entails dynamic 

reassessment of hypotheses in light of new evidence. 
We have defined a simple and useful mathematical the- 
ory based on prediction that quantifies the weight of 
evidence in favor of a hypothesis. Distinctive features 
of our theory include the following: 
0 The mathematics is based upon a simple, easily 

computed model of the way an incorrect hypothe- 
sis makes prediction errors and a generic model of 
how noise affects the rate of prediction errors. 

0 No effort is made to distinguish prediction errors due 
to noise from prediction errors due to a faulty hy- 
pothesis. This frees the theory from explicit depen- 
dence on a particular noise model and enables us to 
write down a generic incremental algorithm applica- 
ble to many problems. In particular, as r + 0 in 
the equations, the noisy case reduces continuously 
to the noise-free case. 

0 The quality of a hypothesis is measured indepen- 
dently of the space of competing hypotheses-i.e., 
each hypothesis is evaluated in terms of its own per- 
formance record, regardless of what other hypothe- 
ses might be competing with it. By contrast with 
conventional Bayesian hypothesis- testing met hods, 
we can easily introduce and discard hypotheses on 
the fly without having to reinitialize all our statisti- 
cal measurements. 

0 The MDL preference for smaller hypotheses is sharp 
ened by separating those syntactic elements that en- 
able the hypothesis to predict more values from those 
that have no bearing at all on the way the hypothesis 
predicts the input data. 
Finally, the algorithm schema for incremental learn- 

ing from noisy data applies to many kinds of learning- 
including concept learning and sequence prediction- 
where the performance of a hypothesis can be tested 
by its ability to predict features of the input data. 
Such a schema serves as a template for building learn- 
ing algorithms for a variety of domains, and like ver- 
sion spaces [Mitchell, 19781 and refinement algorithms 
[Laird, 19881, such schemas obviate reinventing an al- 
gorithm for every new representation by factoring out 
the syntax-independent features of the procedure. 
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